Issue 43, 2016

Competing reaction pathways of 3,3,3-trifluoropropene at rhodium hydrido, silyl and germyl complexes: C–F bond activation versus hydrogermylation

Abstract

The reaction of the silyl complex [Rh{Si(OEt)3}(PEt3)3] (1) with 3,3,3-trifluoropropene afforded the rhodium complex [Rh(CH2CHCF3){Si(OEt)3}(PEt3)2] (2) which features a bonded fluorinated olefin. In contrast the rhodium hydrido complex [Rh(H)(PEt3)3] (3) yielded on treatment with 3,3,3-trifluoropropene in the presence of a base the fluorido complex [Rh(F)(PEt3)3] (4) together with 1,1-difluoro-1-propene by C–F bond activation. At low temperature the intermediate fac-[Rh(H)(CH2CHCF3)(PEt3)3] (5) was detected by NMR spectroscopy. The germyl complex [Rh(GePh3)(PEt3)3] (6) reacted also with 3,3,3-trifluoropropene by C–F bond activation affording again the fluorido complex [Rh(F)(PEt3)3] (4) as well as the (3,3-difluoroallyl)triphenylgermane 7. The catalytic hydrogermylation of 3,3,3-trifluoropropene in the presence of various germanium hydrides under mild conditions was developed by employing complex 6 as a catalyst. The molecular structures of both germane derivatives (3,3-difluoroallyl)triphenylgermane 7 and 1,1,1-trifluoropropane-3-triphenylgermane 8 were determined by X-ray crystallography.

Graphical abstract: Competing reaction pathways of 3,3,3-trifluoropropene at rhodium hydrido, silyl and germyl complexes: C–F bond activation versus hydrogermylation

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2016
Accepted
06 Oct 2016
First published
14 Oct 2016

Dalton Trans., 2016,45, 17495-17507

Competing reaction pathways of 3,3,3-trifluoropropene at rhodium hydrido, silyl and germyl complexes: C–F bond activation versus hydrogermylation

T. Ahrens, M. Teltewskoi, M. Ahrens, T. Braun and R. Laubenstein, Dalton Trans., 2016, 45, 17495 DOI: 10.1039/C6DT03027K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements