Issue 39, 2016

Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations

Abstract

The room temperature structure of Ba5AlF13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR (19F and 27Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F–Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba5AlF13, including site-specific dynamical disorder in the fluorine sub-network.

Graphical abstract: Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2016
Accepted
29 Aug 2016
First published
29 Aug 2016

Dalton Trans., 2016,45, 15565-15574

Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations

C. Martineau, M. Allix, M. R. Suchomel, F. Porcher, F. Vivet, C. Legein, M. Body, D. Massiot, F. Taulelle and F. Fayon, Dalton Trans., 2016, 45, 15565 DOI: 10.1039/C6DT02454H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements