A combined experimental and DFT investigation on the structure and CO-releasing properties of mono and binuclear fac-ReI(CO)3 complexes with 5-pyridin-2-ylmethylene-amino uracils†
Abstract
The synthesis, structure and CO-releasing properties of a number of new tricarbonyl rhenium(I) complexes with 5-substituted-6-amino-1,3-dimethyluracils are reported and their structural features discussed on the basis of both spectral and X-ray crystallographic analyses. The 5-substituent library includes –NCH-2py (DAAUPic) and –CHN–NCH-2py (FDUHzPic) as additional metal binding components and chloride, acetonitrile or pyridine acting as ancillary ligands. The compounds have been identified by elemental analysis, NMR, MS and IR spectroscopy. In addition, [ReCl(CO)3(DAAUPic)], [Re(CO)3(FDUHzPic)py]ClO4, [Re(CO)3(FDUHzPic)py]PF6, [Re2Cl2(CO)6(FDUHzPic)] and [Re2Cl(CO)6(FDUHzPicH−1)(H2O)] structures have been solved by X-ray diffraction methods. These studies have clearly shown that the preferred coordination mode to rhenium takes place through the (N1F,N52)-pyridin-2-yl-methyleneamine moiety, the uracil coordinative availability (O4–N51 or N6–N51) being used only to bind the second metal center. The CO-releasing ability of these rhenium compounds has been investigated by the reaction with myoglobin; the corresponding studies have revealed that two of the mononuclear complexes and their related binuclear analogues are able to release CO to a moderate extent. This ability has also been theoretically assessed through a QTAIM analysis. The results, although non-conclusive, may explain somehow possible different preferences in CO releasing power after a comparison between the nature of Re–CO links in mononuclear and binuclear compounds.