Jump to main content
Jump to site search

Issue 24, 2016
Previous Article Next Article

Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores

Author affiliations

Abstract

Five heteroleptic Cu(I)bis(phenanthroline) chromophores with distinct variation in the steric bulk at the 2,9-phenanthroline position were synthesized using the HETPHEN method, and their ground and excited state properties are described. Analysis of the crystal structures reveals a significant distortion from tetrahedral geometry around the Cu(I) centre which is attributed to favourable aromatic interactions between the two phenanthroline ligands. Ultrafast and nanosecond transient optical spectroscopies reveal that the excited state lifetime can be tuned across two orders of magnitude up to 74 nanoseconds in acetonitrile by changing the 2,9-substituent from hydrogen to sec-butyl. X-ray transient absorption spectroscopy at the Cu K-edge confirmed Cu(I) oxidation to Cu(II) and revealed a decrease of the Cu–N bond lengths in the excited state. The ground and excited state characterization presented here will guide the integration of CuHETPHEN chromophores into complex electron donor–acceptor architectures.

Graphical abstract: Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jan 2016
Accepted
22 Feb 2016
First published
29 Feb 2016

Dalton Trans., 2016,45, 9871-9883
Article type
Paper

Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores

L. Kohler, D. Hayes, J. Hong, T. J. Carter, M. L. Shelby, K. A. Fransted, L. X. Chen and K. L. Mulfort, Dalton Trans., 2016, 45, 9871
DOI: 10.1039/C6DT00324A

Social activity

Search articles by author

Spotlight

Advertisements