Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2016
Previous Article Next Article

Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness

Author affiliations

Abstract

Flexible metal–organic frameworks (MOFs) can undergo fascinating structural transitions triggered by external stimuli, such as adsorption/desorption of specific guest molecules or temperature changes. In this detailed study we investigate the potentials and limitations of tuning framework flexibility systematically by exploiting the powerful concept of mixed-linker solid solutions. We chose the prototypical family of functionalized pillared-layer MOFs of the general type Zn2(fu1-bdc)2x(fu2-bdc)2−2xdabco (with x = 1.00, 0.75, 0.50, 0.25 and 0.00; fu-bdc = 2,5-dialkoxy-1,4-benzenedicarboxylate with varying alkoxy chain length, dabco = 1,4-diazabicyclo[2.2.2]octane) and examined their guest responsive, as well as intrinsic temperature dependent structural flexibility by X-ray diffraction, gas physisorption and calorimetric measurements. The ratio of the different fu-bdc linkers can be adjusted freely, offering opportunity for a targeted design of these functional materials by modulating their key features, such as magnitude of framework contraction upon guest removal, breathing behaviour upon CO2 adsorption/desorption, thermoresponsive phase behaviour, and their general thermal expansivity, by the careful choice of fu-bdc linkers and their combination.

Graphical abstract: Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness

Back to tab navigation

Supplementary files

Article information


Submitted
30 Sep 2015
Accepted
23 Oct 2015
First published
03 Nov 2015

Dalton Trans., 2016,45, 4230-4241
Article type
Paper

Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness

I. Schwedler, S. Henke, M. T. Wharmby, S. R. Bajpe, A. K. Cheetham and R. A. Fischer, Dalton Trans., 2016, 45, 4230
DOI: 10.1039/C5DT03825A

Social activity

Search articles by author

Spotlight

Advertisements