Issue 12, 2016

Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts

Abstract

The hydrogenation of biomass-derived molecules is a key reaction in upgrading these compounds into chemicals and fuels. The use of catalytic transfer hydrogenation, employing alcohols as hydrogen sources, offers an alternative approach to this process, avoiding the use of H2 under high pressure and precious metal catalysts. In this work, the gas-phase conversion of biomass-derived furfural into furfuryl alcohol and 2-methylfuran was studied, using methanol as the H-transfer agent and MgO-based catalysts. Pure MgO was shown to reduce furfural into its corresponding unsaturated alcohol at low reaction temperatures (lower than 350 °C), thus allowing selective H-transfer from methanol to the substrate. 2-Methylfuran formation, associated with the partial rearrangement of furan rings to cyclopentanones, was observed at high temperatures. Conversely, the distribution of compounds obtained with Mg/Fe/O was significantly different, with 2-methylfuran formation prevailing when the reaction was carried out between 300 and 400 °C. In this temperature range, upon tuning the reaction conditions, a very high yield of 2-methylfuran was produced, thus indicating that the mixed oxide allows efficient sequential transfer hydrogenation/hydrogenolysis reactions. These results highlight the potential application of the H-transfer reaction over MgO-based catalysts as an efficient process for the selective de-oxygenation of biomass-derived molecules.

Graphical abstract: Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2015
Accepted
22 Jan 2016
First published
22 Jan 2016

Catal. Sci. Technol., 2016,6, 4418-4427

Author version available

Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts

L. Grazia, A. Lolli, F. Folco, Y. Zhang, S. Albonetti and F. Cavani, Catal. Sci. Technol., 2016, 6, 4418 DOI: 10.1039/C5CY02021B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements