Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 17, 2016
Previous Article Next Article

Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography

Author affiliations

Abstract

Due to the tremendous interest in carbon–fluorine bond-forming reactions, research efforts in this area have been dedicated to the development of facile processes to synthesize small fluorine-containing organic molecules. Among others, PET (Positron Emission Tomography) is one of the most important applications of fluorine chemistry. Recognizing the specific requirements of PET processes, some groups have focused on fluorination reactions using alkali metal fluorides, particularly through SN2-type reactions. However, a common “misconception” about the role of protic solvents and hydrogen bonding interactions in this class of reactions has hampered the employment of these excellent promoters. Herein, we would like to review recent discoveries in this context, showing straightforward nucleophilic fluorination reactions using alkali metal fluorides promoted by protic solvents. Simultaneous dual activation of reacting partners by intermolecular hydrogen bonding and the enhancement of the “effective fluoride nucleophilicity”, which is Nature's biocatalytic approach with the fluorinase enzyme, are the key to this unprecedentedly successful nucleophilic fluorination.

Graphical abstract: Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography

Back to tab navigation

Article information


Submitted
05 Apr 2016
First published
06 Jun 2016

Chem. Soc. Rev., 2016,45, 4638-4650
Article type
Tutorial Review

Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography

J. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim and C. E. Song, Chem. Soc. Rev., 2016, 45, 4638
DOI: 10.1039/C6CS00286B

Social activity

Search articles by author

Spotlight

Advertisements