Issue 46, 2016

Effect of solvent, temperature and pressure on the stability of chiral and perovskite metal formate frameworks of [NH2NH3][M(HCOO)3] (M = Mn, Fe, Zn)

Abstract

We report the synthesis, crystal structure, and thermal, Raman, infrared and magnetic properties of [NH2NH3][M(HCOO)3] (HyM) compounds (M = Mn, Zn, Fe). Our results show that synthesis from methanol solution leads to perovskite polymorphs while that from 1-methyl-2-pyrrolidinone or its mixture with methanol allows obtaining chiral polymorphs. Perovskite HyFe, chiral HyFe and chiral HyMn undergo phase transitions at 347, 336 and 296 K, respectively, with symmetry changes from Pnma to Pna21, P63 to P212121 and P63 to P21. X-ray diffraction and Raman studies show that the phase transitions are governed by dynamics of the hydrazinium ions. Low-temperature magnetic studies show that these compounds exhibit magnetic ordering below 9–12.5 K. Since the low-temperature structures of chiral HyMn and perovskite HyFe are polar, these compounds are possible multiferroic materials. We also report high-pressure Raman scattering studies of chiral and perovskite HyZn, which show much larger stiffness of the latter phase. These studies also show that the ambient pressure polar phases are stable up to at least 1.4 and 4.1 GPa for the chiral and perovskite phase, respectively. Between 1.4 and 2.0 GPa (for chiral HyZn) and 4.1 and 5.2 GPa (for perovskite HyZn) pressure-induced transitions are observed associated with changes in the zinc-formate framework. Strong broadening of Raman bands and the decrease in their number for the high-pressure phase of chiral HyZn suggest that this phase is disordered and has higher symmetry than the ambient pressure one.

Graphical abstract: Effect of solvent, temperature and pressure on the stability of chiral and perovskite metal formate frameworks of [NH2NH3][M(HCOO)3] (M = Mn, Fe, Zn)

Supplementary files

Article information

Article type
Paper
Submitted
28 Sep 2016
Accepted
29 Oct 2016
First published
14 Nov 2016

Phys. Chem. Chem. Phys., 2016,18, 31653-31663

Effect of solvent, temperature and pressure on the stability of chiral and perovskite metal formate frameworks of [NH2NH3][M(HCOO)3] (M = Mn, Fe, Zn)

M. Mączka, K. Pasińska, M. Ptak, W. Paraguassu, T. A. da Silva, A. Sieradzki and A. Pikul, Phys. Chem. Chem. Phys., 2016, 18, 31653 DOI: 10.1039/C6CP06648H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements