Issue 36, 2016

Directional dependence of the electronic and transport properties of 2D borophene and borophane

Abstract

Very recently two dimensional layers of boron atoms, so called borophene, have been successfully synthesized. It presents a metallic band structure, with a strong anisotropic character. Upon further hydrogen adsorption a new material is obtained, borophane; giving rise to a Dirac cone structure like the one in graphene. We have performed a first-principles study of the electronic and transport properties of borophene and borophane through the Landauer–Büttiker formalism. We find that borophene presents an electronic current two orders of magnitude larger than borophane. In addition we verified the direction dependence of the electronic current in two perpendicular directions, namely, Ix and Iy; where for both systems, we found a current ratio, η = Ix/Iy, of around 2. Aiming to control such a current anisotropy, η, we performed a study of its dependence with respect to an external strain. Where, by stretching the borophane sheet, η increases by 11% for a bias voltage of 50 mV.

Graphical abstract: Directional dependence of the electronic and transport properties of 2D borophene and borophane

Article information

Article type
Paper
Submitted
22 Jul 2016
Accepted
18 Aug 2016
First published
18 Aug 2016

Phys. Chem. Chem. Phys., 2016,18, 25491-25496

Directional dependence of the electronic and transport properties of 2D borophene and borophane

J. E. Padilha, R. H. Miwa and A. Fazzio, Phys. Chem. Chem. Phys., 2016, 18, 25491 DOI: 10.1039/C6CP05092A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements