Issue 25, 2016

Saccharide-induced modulation of photoluminescence lifetime in microgels

Abstract

Sugar-responsive microgels were prepared by the covalent grafting of a poly(N-isopropylacrylamide) (pNIPAM) matrix with phenylboronic acid (PBA) as a saccharide sensing unit and a [Ru(bpy)3]2+ derivative (2,2′-bipyridine) as a luminescent reporter. Time-resolved emission studies reveal that the ruthenium complex has an unusually long lifetime (1.6 μs) and high quantum yield (∼0.17) in the PBA-microgel environment. In the presence of sugars, the microgels swell due to the formation of a sugar–boronate ester, leading to a more hydrophilic polymer chain. The swelling is accompanied by a decrease of the lifetime and the photoluminescence quantum yield, which cannot be explained solely by the swelling of the hydrogel. The emission properties of the ruthenium complex in PBA-functionalized microgels are compared to those in pNIPAM microgels lacking PBA moieties in various swelling states. The presence of PBA in the vicinity of [Ru(bpy)3]2+ is shown to have a predominant impact on its luminescence properties, mainly through a decrease of the polarity. Sugar-induced triggering of the boronate state thus leads to strong variations of the polarity and the luminescence characteristics.

Graphical abstract: Saccharide-induced modulation of photoluminescence lifetime in microgels

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2016
Accepted
26 May 2016
First published
26 May 2016

Phys. Chem. Chem. Phys., 2016,18, 16812-16821

Saccharide-induced modulation of photoluminescence lifetime in microgels

S. A. Denisov, F. Pinaud, M. Chambaud, V. Lapeyre, B. Catargi, N. Sojic, N. D. McClenaghan and V. Ravaine, Phys. Chem. Chem. Phys., 2016, 18, 16812 DOI: 10.1039/C6CP01523A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements