Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 19, 2016
Previous Article Next Article

Analysis of constant tension-induced rupture of lipid membranes using activation energy

Author affiliations

Abstract

The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs.

Graphical abstract: Analysis of constant tension-induced rupture of lipid membranes using activation energy

Back to tab navigation

Supplementary files

Article information


Submitted
22 Feb 2016
Accepted
13 Apr 2016
First published
15 Apr 2016

Phys. Chem. Chem. Phys., 2016,18, 13487-13495
Article type
Paper

Analysis of constant tension-induced rupture of lipid membranes using activation energy

M. A. S. Karal, V. Levadnyy and M. Yamazaki, Phys. Chem. Chem. Phys., 2016, 18, 13487
DOI: 10.1039/C6CP01184E

Social activity

Search articles by author

Spotlight

Advertisements