Issue 19, 2016

A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols

Abstract

The near-infrared (NIR) spectra of low-concentration (5 × 10−3 M) solutions in CCl4 of basic aliphatic alcohols, methanol, ethanol, and 1-propanol were, for the first time, calculated by second-order vibrational perturbation theory computations and were compared with the corresponding experimental data. Density functional theory (DFT) using single hybrid (B3LYP) and double hybrid (B2PLYP) density functionals and their derivatives with additional empirical dispersion correction (B3LYP-D3 and B2PLYP-D, respectively) and second order Møller–Plesset perturbation theory were used in combination with selected basis sets including fairly new basis sets from the “spectroscopic” SNS family, double-ζ SNSD and triple-ζ SNST basis sets. Each time, anharmonic vibrational modes and intensities were calculated by using second-order vibrational perturbation theory. The effect of solvent cavity on the calculated results was included by the application of a self-consistent reaction field with a polarized continuum model. Ethanol and 1-propanol have conformational isomerism; following a conformational analysis, theoretical spectra of all isomers were calculated and their final predicted NIR spectra were obtained as Boltzmann-averaged spectra of resolved conformers. For ethanol and 1-propanol, the observed broadening of the overtone band of the OH stretching mode was well reflected by the differences in the position of the relevant band among conformational isomers of these alcohols; the effect of solvent on broadening was also discussed. Detailed band assignments in the experimental NIR spectra of the studied alcohols were proposed based on the calculation of potential energy distributions. The final accuracy of the predicted NIR spectra for each of the theoretical methods was estimated based on the errors in calculated frequencies of overtones and combination bands.

Graphical abstract: A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2016
Accepted
03 Apr 2016
First published
06 Apr 2016

Phys. Chem. Chem. Phys., 2016,18, 13666-13682

A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols

K. B. Beć, Y. Futami, M. J. Wójcik and Y. Ozaki, Phys. Chem. Chem. Phys., 2016, 18, 13666 DOI: 10.1039/C6CP00924G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements