Issue 28, 2016

Enhanced fluorescence of [[5′-(4-hydroxyphenyl)[2,2′-bithiophen]-5-yl]methylene]-propanedinitrile (NIAD-4): solvation induced micro-viscosity enhancement

Abstract

Excited state solvation plays a very important role in modulating the emission behavior of fluorophores upon excitation. Here, the solvation effects on the local micro-environment around a fluorophore are proposed by investigating the fantastic emission behavior of a novel amyloid fibril marker, NIAD-4, in different alcoholic and aprotic solvents. In alcoholic solvents, high solvent viscosity causes an obvious enhancement of fluorescence because of the restriction of torsion of NIAD-4, where the formation of a non-fluorescent twist intramolecular charge transfer (TICT) state is suppressed. In aprotic solvents, high solvent polarity leads to a remarkable redshift of the emission spectra suggesting strong solvation. Surprisingly, an abnormal fluorescence enhancement of NIAD-4 is observed with increasing solvent polarity of the aprotic solvents, whereas solvent viscosity plays little role in influencing the fluorescence intensity. We conclude that such an abnormal phenomenon is originated from a solvation induced micro-viscosity enhancement around the fluorophore upon excitation which restricts the torsion of NIAD-4. Femtosecond transient absorption results further prove such a micro-viscosity increasing mechanism. We believe that this solvation induced micro-viscosity enhancement effect on fluorescence could widely exist for most donor–π–acceptor (D–π–A) compounds in polar solvents, which should be carefully taken into consideration when probing the micro-viscosity in polar environments, especially in complex bioenvironments.

Graphical abstract: Enhanced fluorescence of [[5′-(4-hydroxyphenyl)[2,2′-bithiophen]-5-yl]methylene]-propanedinitrile (NIAD-4): solvation induced micro-viscosity enhancement

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2016
Accepted
14 Jun 2016
First published
15 Jun 2016

Phys. Chem. Chem. Phys., 2016,18, 18750-18757

Enhanced fluorescence of [[5′-(4-hydroxyphenyl)[2,2′-bithiophen]-5-yl]methylene]-propanedinitrile (NIAD-4): solvation induced micro-viscosity enhancement

J. Hu, H. Zhu, Y. Li, X. Wang, R. Ma, Q. Guo and A. Xia, Phys. Chem. Chem. Phys., 2016, 18, 18750 DOI: 10.1039/C6CP00881J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements