Issue 11, 2016

A polyethylenimine functionalized porous/hollow nanoworm as a drug delivery system and a bioimaging agent

Abstract

A wormstructured and nanosized porous/hollow polyethyleneimine (PEI) functionalized Gd2O3/Fe3O4 composite was fabricated as a drug carrier and a bioimaging agent. The effect of PEI's chain length on the size and morphology of the nanoworm was investigated and the results indicated that the nanoworm modified with PEI (10 000 molecular weight) (designated as p-nanoworm) possessed a suitable size and a porous/hollow structure. Meanwhile, the p-nanoworm could effectively prevent the leakage of Gd ions under different pH conditions because of plenty of amino groups on their surface. Compared with contrast agents of clinical use, the p-nanoworm displayed MR enhancement with a high r1 relaxivity of 5.58 s−1 mM−1 per gadolinium atom. Cisplatin (CDDP), a clinical anticancer drug, could be easily loaded into the pores and lumen of the p-nanoworm (p-nanoworm-CDDP) and also controllably released by adjusting the pH value. Cell assay suggested that the p-nanoworm possessed satisfactory biocompatibility and meanwhile could promote CDDP uptake of HeLa cells and enhance the inhibition effect on HeLa cells. In addition, p-nanoworm-CDDP showed a negligible cytotoxicity on normal human cells, indicating that the side effect of CDDP is reduced. Thus, the p-nanoworm could have a potential application for the diagnosis and therapy of cancer.

Graphical abstract: A polyethylenimine functionalized porous/hollow nanoworm as a drug delivery system and a bioimaging agent

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2015
Accepted
11 Feb 2016
First published
15 Feb 2016

Phys. Chem. Chem. Phys., 2016,18, 7820-7828

A polyethylenimine functionalized porous/hollow nanoworm as a drug delivery system and a bioimaging agent

X. Sun, C. Cai, Q. Wang, D. Cai, J. Qian, Y. Chi, K. Zheng, X. Zhang, G. Zhang, K. Zhong and Z. Wu, Phys. Chem. Chem. Phys., 2016, 18, 7820 DOI: 10.1039/C5CP07933K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements