Charge- and thickness-dependent inplane deformation of multilayer graphene thin films
Abstract
The charge- and thickness-dependent inplane deformation of multilayer graphene thin films in an electrolyte was studied by joint first-principles/continuum calculations (JFPCC) and the surface eigenstress model. At thermodynamic equilibrium, a multilayer graphene film exhibits initial deformation, which is asymmetric with respect to negative and positive charges, and the thickness-dependent minimal inplane C–C bond length occurs at the same positive charge of about 0.0381 × 1020 |e| m−2 for all studied films. The surface eigenstress model was further developed to take the charge-induced deformation into account, which yields analytical formulas. The analytical formulas describe the JFPCC results well for multilayer graphene thin films with a layer number larger than two, and are powerful and user friendly for understanding the charge and thickness dependent deformation in atomistic calculations and sophisticated experiments with multilayer graphene thin films.
Please wait while we load your content...