Jump to main content
Jump to site search

Issue 39, 2016
Previous Article Next Article

A stimuli-responsive Au(i) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties

Author affiliations

Abstract

Herein we report the synthesis of a stimuli-responsive binuclear Au(I) complex based on the 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligand, which is a novel template for the design of luminescent metal complexes. In the solid state, the complex obtained gives three different crystalline phases, which were characterized by XRD analysis. It was also found that the crystalline phases can be reversibly interconverted by recrystallization or solvent vapour treatment. The emission of these phases varies in the 500–535 nm range. Quite unexpectedly, the emission energy of these phases is mostly determined by the non-covalent interactions of the solvent molecules with the ligand environment, which have nearly no effect on the Au–Au interactions in the chromophoric centre. The complex obtained demonstrates thermo/solvatochromism to display greenish emission in a DCM matrix and blue emission in an acetone matrix at 77 K, in contrast to the blue emission of the phase containing a DCM molecule and greenish-yellow emission of the acetone solvate in a crystal cell at room temperature. The potentially important role of co-crystallized solvent molecules in the ligand-based emission of the complex obtained is supported by DFT calculations.

Graphical abstract: A stimuli-responsive Au(i) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties

Back to tab navigation

Supplementary files

Article information


Submitted
01 Jun 2016
Accepted
15 Aug 2016
First published
16 Aug 2016

This article is Open Access

CrystEngComm, 2016,18, 7629-7635
Article type
Paper

A stimuli-responsive Au(I) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties

I. D. Strelnik, V. V. Gurzhiy, V. V. Sizov, E. I. Musina, A. A. Karasik, S. P. Tunik and E. V. Grachova, CrystEngComm, 2016, 18, 7629
DOI: 10.1039/C6CE01272H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements