Jump to main content
Jump to site search

Issue 60, 2016
Previous Article Next Article

Immobilization of an artificial imine reductase within silica nanoparticles improves its performance

Author affiliations

Abstract

Silica nanoparticles equipped with an artificial imine reductase display remarkable activity towards cyclic imine- and NAD+ reduction. The method, based on immobilization and protection of streptavidin on silica nanoparticles, shields the biotinylated metal cofactor against deactivation yielding over 46 000 turnovers in pure samples and 4000 turnovers in crude cellular extracts.

Graphical abstract: Immobilization of an artificial imine reductase within silica nanoparticles improves its performance

Back to tab navigation

Supplementary files

Article information


Submitted
01 Jun 2016
Accepted
28 Jun 2016
First published
06 Jul 2016

This article is Open Access

Chem. Commun., 2016,52, 9462-9465
Article type
Communication

Immobilization of an artificial imine reductase within silica nanoparticles improves its performance

M. Hestericová, M. R. Correro, M. Lenz, P. F.-X. Corvini, P. Shahgaldian and T. R. Ward, Chem. Commun., 2016, 52, 9462
DOI: 10.1039/C6CC04604E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements