Issue 46, 2016

Changes in orange juice (poly)phenol composition induced by controlled alcoholic fermentation

Abstract

Orange juice is a rich source of bioactive compounds. Fermentation processes have been carried out in fruits, resulting in products with higher bioactive compound contents than the substrates. The aim of this study was to evaluate changes in phenolic acids, flavones and flavanone derivatives during the alcoholic fermentation process (15 days) in orange juice and to optimize the fermentation time. A total of 45 (poly)phenolic compounds were detected by UHPLC coupled with a linear trap quadrupole (LTQ) and Orbitrap Elite series mass analyser (UHPLC-Orbitrap-MS/MS). We tentatively identified 21 hydroxycinnamic acids, including ferulic acid, caffeic acid, and sinapic acid, in addition to 18 hydroxycinnamic acid derivatives (7 ferulic acid derivatives, 8 caffeic acid derivatives, 2 sinapic acid derivatives, a p-coumaric acid derivative) as well as 2 hydroxybenzoic acid derivatives, a hydroxypropionic acid derivative and other compounds (citric acid, quinic acid, 3 quinic acid derivatives) for the first time in fermented orange juice. In addition, 16 flavonoids, 7 flavanones (didymin, hesperidin, narirutin and 4 narirutin derivatives), 7 flavonols (kaempferol derivatives) and 2 flavones (diosmetin, vicenin-2) were putatively identified in fermented orange juice for the first time. Total hydroxycinnamic acid, benzoic acid, flavones and flavonol derivative contents showed significant increases (7.9, 4.7, 18.3 and 24.5%, respectively) on day 11 of fermentation relative to the original juice. The optimum time for the procedure was 11 days, after which the highest content of (poly)phenolic compounds was reached. The potential beverage produced by alcoholic fermentation of orange juice would exert greater health effects in humans than the substrate, derived from both the (poly)phenolic content and the low level of alcoholic content.

Graphical abstract: Changes in orange juice (poly)phenol composition induced by controlled alcoholic fermentation

Article information

Article type
Paper
Submitted
28 Sep 2016
Accepted
18 Oct 2016
First published
10 Nov 2016

Anal. Methods, 2016,8, 8151-8164

Changes in orange juice (poly)phenol composition induced by controlled alcoholic fermentation

M. Oliveras-López, A. B. Cerezo, B. Escudero-López, I. Cerrillo, G. Berná, F. Martín, M. C. García-Parrilla and M. Fernández-Pachón, Anal. Methods, 2016, 8, 8151 DOI: 10.1039/C6AY02702D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements