Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co3O4 nanoparticle modified electrode
Abstract
In this study, a new type of organophosphate pesticide (OP) biosensor was successfully fabricated based on the immobilization of acetylcholinesterase (AChE) by cross-linking on a glassy carbon electrode (GCE) modified with ionic liquid functionalized graphene (IL-GR), Co3O4 nanoparticles and chitosan (CHI). The introduction of IL-GR and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the oxidation of thiocholine, a hydrolysis product of acetylthiocholine, the peak current at the AChE/IL-GR/Co3O4/CHI/GCE electrode is larger than those at AChE/IL-GR/CHI/GCE and AChE/Co3O4/CHI/GCE electrodes. A linear relationship between the inhibition percentage (I%) and logarithm of the concentration of dimethoate was found in the range from 5.0 × 10−12 to 1.0 × 10−7 M, with a detection limit of 1.0 × 10−13 M (S/N = 3). The proposed biosensor provided an efficient and promising platform for the immobilization of AChE and exhibited higher sensitivity and acceptable stability for the detection of organophosphate pesticides.
Please wait while we load your content...