Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 22, 2016

Recent advances in the chemical imaging of human fingermarks (a review)

Author affiliations

Abstract

This review highlights the considerable advances in the chemical imaging of human fingermarks that provide more chemical information, including numerous endogenous and exogenous constituents. Despite remarkable development in DNA analysis and recognition, human fingermark analysis remains one of the priority approaches available for obtaining reliable forensic evidence. Additional information about the donor can be obtained from the chemical composition of latent fingermarks in addition to the ridge pattern, such as the age, gender, medical history, and possible drug habits. The analytical approaches reviewed here include spectroscopy, mass spectrometry, immuno-labelling and electrochemical methods. Each method has different capabilities with respect to sensitivity, reproducibility, selectivity, reliability and ultimately applicability, either for use in routine forensic practice or in academic research work. The advantages of spectroscopic techniques, including infrared, Raman and micro-X-ray fluorescence spectroscopy, are the capabilities of a rapid and non-destructive imaging of fingermarks by providing spectral information on chemical composition. In addition, mass spectrometry imaging can provide spatially specific information on fingermark chemical composition. Recently, the use of immuno-labelling in latent fingermark detection has attracted significant attention because it can overcome the sensitivity and selectivity problems experienced with other existing methods. The electrochemical method has also been employed to image latent fingermarks by measuring the electric current changes with the spatial chemical composition from the ridges and valleys at high resolution to provide a third level of detail, which is especially useful for multicoloured background surfaces or for surfaces contaminated with blood or other bodily fluids.

Graphical abstract: Recent advances in the chemical imaging of human fingermarks (a review)

Article information


Submitted
16 May 2016
Accepted
12 Sep 2016
First published
12 Sep 2016

This article is Open Access

Analyst, 2016,141, 6172-6189
Article type
Minireview

Recent advances in the chemical imaging of human fingermarks (a review)

Q. Wei, M. Zhang, B. Ogorevc and X. Zhang, Analyst, 2016, 141, 6172 DOI: 10.1039/C6AN01121G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements