Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 12, 2016
Previous Article Next Article

Visualizing surface plasmons with photons, photoelectrons, and electrons

Author affiliations


Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint nanometer spatial and femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes. In this mini-review, we briefly highlight different techniques employed by our own groups to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples from our own laboratories, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

Graphical abstract: Visualizing surface plasmons with photons, photoelectrons, and electrons

Back to tab navigation

Article information

06 Feb 2016
05 Apr 2016
First published
06 Apr 2016

Analyst, 2016,141, 3562-3572
Article type

Visualizing surface plasmons with photons, photoelectrons, and electrons

P. Z. El-Khoury, P. Abellan, Y. Gong, F. S. Hage, J. Cottom, A. G. Joly, R. Brydson, Q. M. Ramasse and W. P. Hess, Analyst, 2016, 141, 3562
DOI: 10.1039/C6AN00308G

Social activity

Search articles by author