Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2016
Previous Article Next Article

Investigating the effect of Ag nanocube polydispersity on gap-mode SERS enhancement factors

Author affiliations

Abstract

High Raman enhancement factors (EFs) have been observed for surface-enhanced Raman spectroscopy (SERS) substrates fabricated from colloidal metal nanoparticles. Electrodynamic models of single nanoparticles often do not accurately predict the Raman EFs measured experimentally for such colloidal substrates, which often consist of nanoparticles that exhibit heterogeneity in both size and shape. Here, we investigate the size and shape dispersity of colloidal Ag nanocube samples and their effect on Raman EF. We generate an analytical model that incorporates nanocube size dispersion and calculates the Raman EF associated with an ensemble of differently sized nanocubes. For nanocubes that are ∼70–80 nm in size, this model is sufficient to correct the inaccuracies for electrodynamic simulations of a single nanocube model. For nanocubes >90 nm, size dispersity alone fails to account for the high EFs observed when these substrates are excited off-resonance. We hypothesize that shape defects may play a significant role in optical response at these larger sizes and discuss how these factors can play a role in our analytical model.

Graphical abstract: Investigating the effect of Ag nanocube polydispersity on gap-mode SERS enhancement factors

Back to tab navigation

Article information


Submitted
26 Jan 2016
Accepted
28 Apr 2016
First published
29 Apr 2016

Analyst, 2016,141, 3916-3924
Article type
Paper

Investigating the effect of Ag nanocube polydispersity on gap-mode SERS enhancement factors

T. J. Dill, M. J. Rozin, E. R. Brown, S. Palani and A. R. Tao, Analyst, 2016, 141, 3916
DOI: 10.1039/C6AN00212A

Social activity

Search articles by author

Spotlight

Advertisements