Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2016
Previous Article Next Article

Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy

Author affiliations

Abstract

Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K+, which showed increased reactivity when compared to tetrabutylammonium (TBA+)- and Li+-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K+ compared to TBA+ and Li+ are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries.

Graphical abstract: Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy

Back to tab navigation

Supplementary files

Article information


Submitted
26 Jan 2016
Accepted
30 Mar 2016
First published
30 Mar 2016

Analyst, 2016,141, 3842-3850
Article type
Paper

Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy

M. Burgess, K. Hernández-Burgos, K. J. Cheng, J. S. Moore and J. Rodríguez-López, Analyst, 2016, 141, 3842
DOI: 10.1039/C6AN00203J

Social activity

Search articles by author

Spotlight

Advertisements