Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2016
Previous Article Next Article

Hg2+ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA

Author affiliations

Abstract

Mercury is a highly toxic heavy metal and many DNA-based biosensors have been recently developed for Hg2+ detection in water. Among them, thymine-rich DNA is the most commonly used for designing Hg2+ sensors. However, the thymine–Hg2+ interaction is strongly affected by the buffer conditions. We recently reported a molecular beacon containing phosphorothioate (PS)-modified RNA linkages that can be cleaved by Hg2+. In this work, the fluorescence quenching and DNA adsorption properties of nano-sized graphene oxide (NGO) were used to develop a new sensor using the PS-RNA chemistry. Three DNA probes, containing one, three and five PS-RNA linkages, respectively, were tested. Finally, a fluorophore-labeled poly-A DNA with five PS-RNA linkages was selected and adsorbed by NGO. In the presence of Hg2+, the fluorophore was released from NGO due to the cleavage reaction, resulting in a fluorescence enhancement. This sensor is highly selective for Hg2+ with a detection limit of 8.5 nM Hg2+. For comparison, a fluorophore-labeled poly-T DNA was also tested, which responded to Hg2+ more slowly and was inhibited by high NaCl concentrations, while the PS-RNA probe was more tolerant to different buffer conditions. This work indicates a new method for interfacing DNA with NGO for Hg2+ detection.

Graphical abstract: Hg2+ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA

Back to tab navigation

Article information


Submitted
02 Oct 2015
Accepted
06 Nov 2015
First published
06 Nov 2015

Analyst, 2016,141, 3788-3793
Article type
Paper

Hg2+ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA

P. J. Huang, C. van Ballegooie and J. Liu, Analyst, 2016, 141, 3788
DOI: 10.1039/C5AN02031J

Social activity

Search articles by author

Spotlight

Advertisements