Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 30, 2016
Previous Article Next Article

Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design

Author affiliations

Abstract

Solution-processed oxo-functionalized graphene (oxo-G1) is employed to substitute hydrophilic PEDOT:PSS as an anode interfacial layer for perovskite solar cells. The resulting devices exhibit a reasonably high power conversion efficiency (PCE) of 15.2% in the planar inverted architecture with oxo-G1 as a hole transporting material (HTM), and most importantly, deploy the full open-circuit voltage (Voc) of up to 1.1 V. Moreover, oxo-G1 effectively slows down the ingress of water vapor into the device stack resulting in significantly enhanced environmental stability of unpackaged cells under illumination with 80% of the initial PCE being reached after 500 h. Without encapsulation, ∼60% of the initial PCE is retained after ∼1000 h of light soaking under 0.5 sun and ambient conditions maintaining the temperature beneath 30 °C. Moreover, the unsealed perovskite device retains 92% of its initial PCE after about 1900 h under ambient conditions and in the dark. Our results underpin that controlling water diffusion into perovskite cells through advanced interface engineering is a crucial step towards prolonged environmental stability.

Graphical abstract: Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design

Back to tab navigation

Supplementary files

Article information


Submitted
05 May 2016
Accepted
01 Jul 2016
First published
04 Jul 2016

J. Mater. Chem. A, 2016,4, 11604-11610
Article type
Communication

Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design

H. Chen, Y. Hou, C. E. Halbig, S. Chen, H. Zhang, N. Li, F. Guo, X. Tang, N. Gasparini, I. Levchuk, S. Kahmann, C. O. Ramirez Quiroz, A. Osvet, S. Eigler and C. J. Brabec, J. Mater. Chem. A, 2016, 4, 11604
DOI: 10.1039/C6TA03755K

Social activity

Search articles by author

Spotlight

Advertisements