Jump to main content
Jump to site search

Issue 11, 2016
Previous Article Next Article

Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction

Author affiliations

Abstract

We developed new cyclic Re(I)-based trinuclear redox photosensitizers with both high oxidation power in the excited state and strong reduction power in the reduced form. These excellent properties were achieved by introducing electron-donating groups on the diimine ligand of the Re(I) metal centre and by connecting each Re(I) unit with polyphenyl–bisphosphine bridging ligands. These Re-rings were applied to homogenous visible light-driven photocatalytic CO2 reduction in conjunction with various mononuclear catalysts, such as Re(I), Ru(II) and Mn(I) metal complexes, employing a relatively weak sacrificial electron donor, triethanolamine. Each system showed good product selectivity (CO or HCOOH) and an excellent quantum yield of product formation ΦCO = 0.60 to 0.74 using fac-[ReI(bpy)(CO)3(CH3CN)]+, ΦHCOOH = 0.58 using trans(Cl)–RuII(dtbb)(CO)2Cl2 and ΦHCOOH = 0.48 using a fac-[MnI(dtbb)(CO)3(CH3CN)]+ catalyst. The high photocatalytic efficiencies for CO2 reduction are attributed to efficient reductive quenching of the Re-ring by triethanolamine and fast electron transfer from the generated one-electron-reduced species of the ring to the catalyst.

Graphical abstract: Rhenium(i) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 May 2016, accepted on 04 Jul 2016 and first published on 05 Jul 2016


Article type: Edge Article
DOI: 10.1039/C6SC01913G
Chem. Sci., 2016,7, 6728-6739
  • Open access: Creative Commons BY license
  •   Request permissions

    Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction

    J. Rohacova and O. Ishitani, Chem. Sci., 2016, 7, 6728
    DOI: 10.1039/C6SC01913G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements