Jump to main content
Jump to site search

Issue 5, 2016
Previous Article Next Article

Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction

Author affiliations

Abstract

Exploring efficient noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) is one of the most promising pathways for facing the energy crisis. Herein, MoC–Mo2C heteronanowires composed of well-defined nanoparticles were accomplished via controlled carbonization, showing excellent HER activity, fast kinetic metrics and outstanding stability in both acid and basic electrolytes. In particular, the optimal one consisting of 31.4 wt% MoC displayed a low overpotential (η10 = 126 and 120 mV for reaching a current density of −10 mA cm−2), a small Tafel slope (43 and 42 mV dec−1) and a low onset overpotential (38 and 33 mV) in 0.5 M H2SO4 and 1.0 M KOH, respectively. Such prominent performance, outperforming most of the current noble-metal free electrocatalysts, was ascribed to the carbide surface with an optimized electron density, and the consequently facilitated HER kinetics. This work elucidates a feasible way toward efficient electrocatalysts via heteronanostructure engineering, shedding some light on the exploration and optimization of catalysts in energy chemistry.

Graphical abstract: Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction

Back to tab navigation

Supplementary files

Article information


Submitted
07 Jan 2016
Accepted
11 Feb 2016
First published
12 Feb 2016

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2016,7, 3399-3405
Article type
Edge Article

Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction

H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, Chem. Sci., 2016, 7, 3399
DOI: 10.1039/C6SC00077K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements