Issue 21, 2016

Synthesis of well-defined alkyne terminated poly(N-vinyl caprolactam) with stringent control over the LCST by RAFT

Abstract

The reversible addition–fragmentation chain transfer (RAFT) of N-vinyl caprolactam (NVCL) using two new xanthates with alkyne functionalities is reported. The kinetic data obtained for polymerization of this non-activated monomer using a protected alkyne-terminated RAFT agent (PAT-X1) revealed a linear increase of the polymer molecular weight with the monomer conversion as well as low dispersity (Đ) during the entire course of the polymerization. The system reported here allowed us to enhance the final conversion, diminish Đ and reduce the polymerization temperature compared to the typical values reported in the scarce literature available for the RAFT polymerization of NVCL. The resulting PNVCL was fully characterized using 1H nuclear magnetic resonance (1H NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The temperature-responsive features of PNVCL in aqueous solutions were fully investigated under different conditions using turbidimetry. The presented strategy allows the synthesis of well-defined PNVCL with sharp and reversible phase transition temperatures around 37 °C. By manipulating the polymer molecular weight, or the solution properties, it is possible to tune the PNVCL phase transition. As a proof-of concept, the alkyne functionalized PNVCL was used to afford new linear block copolymers, by reacting with an azide-terminated poly(ethylene glycol) (N3-PEG) through the copper catalyzed azide–alkyne [3 + 2] dipolar cycloaddition (CuAAC) reaction. The results presented establish a robust system to afford the synthesis of PNCVL with fine tuned characteristics that will enable more efficient exploration of the remarkable potential of this polymer in biomedical applications.

Graphical abstract: Synthesis of well-defined alkyne terminated poly(N-vinyl caprolactam) with stringent control over the LCST by RAFT

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2016
Accepted
29 Jan 2016
First published
01 Feb 2016

RSC Adv., 2016,6, 16996-17007

Synthesis of well-defined alkyne terminated poly(N-vinyl caprolactam) with stringent control over the LCST by RAFT

J. R. Góis, J. R. C. Costa, A. V. Popov, A. C. Serra and J. F. J. Coelho, RSC Adv., 2016, 6, 16996 DOI: 10.1039/C6RA01014H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements