Issue 35, 2016, Issue in Progress

pH-Triggered copolymer micelles as drug nanocarriers for intracellular delivery

Abstract

One growing issue is how to use the weakly acidic conditions in endosomes/lysosomes for designing highly pH-sensitive drug carriers to deliver chemotherapeutic drugs accurately. In this paper, pH-sensitive amphiphilic triblock copolymers PEG8-PDPAn-PEG8 (n = 30, 50 and 100) were synthesized. Micelles composed of the copolymers were found to enter into lysosomes using a lysosome tracker method. The pH-sensitivity makes the micelles stable at pH 7.4 but swell and become looser at pH 6.0 due to protonation. Then, doxorubicin (DOX) was efficiently encapsulated in the hydrophobic cores of the micelles and released continuously in a weakly acidic environment. Cell toxicity assays were carried out using 2 human cell lines (HEK293 and Huh7) and showed good cyto-compatibility. In vitro cell viability tests proved that the DOX-loaded micelles could be more efficiently taken up by Huh7 tumor cells than free DOX, as well as actively trigger intracellular DOX release. Furthermore, in addition to small molecules (DOX), the copolymer micelles could also deliver macromolecules (such as transferrin, which could not enter into cells by itself) into lysosomes/endosomes. These nontoxic and multifunctional micelles can serve as a promising treatment candidate for efficient intracellular drug delivery and real-time monitoring.

Graphical abstract: pH-Triggered copolymer micelles as drug nanocarriers for intracellular delivery

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2016
Accepted
06 Mar 2016
First published
08 Mar 2016

RSC Adv., 2016,6, 29149-29158

pH-Triggered copolymer micelles as drug nanocarriers for intracellular delivery

W. Hao, D. Liu, Y. Shang, J. Zhang, S. Xu and H. Liu, RSC Adv., 2016, 6, 29149 DOI: 10.1039/C6RA00673F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements