Jump to main content
Jump to site search

Issue 5, 2016
Previous Article Next Article

Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties

Author affiliations

Abstract

In this study, Cu2O microcubes and microspheres were synthesized using facile hydrothermal methods by manipulating the synthesis parameters. The Cu2O microcubes (∼2 μm in diameter) were formed in presence of formic acid, whereas hierarchical Cu2O microspheres (∼5 μm in diameter) were formed in acetic acid. Transmission electron microscopy (TEM) confirmed the formation of single crystalline microcubes and polycrystalline microspheres. The possible growth mechanism suggested that microcubes were formed due to the cubic crystal structure of Cu2O and the formation kinetics, whereas microspheres were formed due to the orientational attachment of nuclei with similar aggregation velocities along every direction. The electrochemical properties of the Cu2O microcubes and microspheres were investigated to understand the role of the morphology on the supercapacitor properties. The Cu2O microcubes exhibited a higher specific capacitance, better rate capability and cycling stability as compared to microspheres, although the particle size and pore size were larger and surface area was lower. The specific capacitance of the Cu2O microcubes and microspheres were 660 and 516 F g−1, respectively, at a 1 A g−1 current density. The Cu2O microcubes showed 80% specific capacitance retention at a 5 A g−1 current density after 1000 cycles. The single crystalline nature and the presence of a smaller number of grain boundaries in the microcubes compared to the microspheres resulted in an increase in conductivity and an increase in capacitance. The results showed that the Cu2O microcubes can be a promising electrode material for high performance supercapacitors.

Graphical abstract: Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties

Back to tab navigation

Supplementary files

Article information


Submitted
01 Oct 2015
Accepted
15 Dec 2015
First published
18 Dec 2015

This article is Open Access

RSC Adv., 2016,6, 3815-3822
Article type
Paper

Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties

R. Kumar, P. Rai and A. Sharma, RSC Adv., 2016, 6, 3815
DOI: 10.1039/C5RA20331G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements