Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 28, 2016
Previous Article Next Article

Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland–Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B

Author affiliations

Abstract

6-Substituted-2H-dihydropyran-4-one products of the Maitland–Japp reaction have been converted into tetrahydropyrans containing uncommon substitution patterns. Treatment of 6-substituted-2H-dihydropyran-4-ones with carbon nucleophiles led to the formation of tetrahydropyran rings with the 2,6-trans-stereochemical arrangement. Reaction of the same 6-substituted-2H-dihydropyran-4-ones with L-Selectride led to the formation of 3,6-disubstituted tetrahydropyran rings, while trapping of the intermediate enolate with carbon electrophiles in turn led to the formation 3,3,6-trisubstituted tetrahydropyran rings. The relative stereochemical configuration of the new substituents was controlled by the stereoelectronic preference for pseudo-axial addition of the nucleophile and trapping of the enolate from the opposite face. Application of these methods led to a synthesis of the potent anti-osteoporotic diarylheptanoid natural product diospongin B.

Graphical abstract: Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland–Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B

Back to tab navigation

Supplementary files

Article information


Submitted
31 May 2016
Accepted
17 Jun 2016
First published
20 Jun 2016

This article is Open Access

Org. Biomol. Chem., 2016,14, 6840-6852
Article type
Paper
Author version available

Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland–Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B

P. A. Clarke, N. M. Nasir, P. B. Sellars, A. M. Peter, C. A. Lawson and J. L. Burroughs, Org. Biomol. Chem., 2016, 14, 6840
DOI: 10.1039/C6OB01182A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements