Jump to main content
Jump to site search

Issue 5, 2016
Previous Article Next Article

Mechanical meta-materials

Author affiliations


The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed micro/nano-architecture of mechanical meta-materials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. This paper presents an overview of the recent developments in the area of mechanical meta-materials. Extremal materials that are extremely stiff in certain modes of deformation, while extremely soft in other modes of deformation are discussed first. Penta-mode, dilational, and other auxetic meta-materials are all discussed within the context of extremal materials. Negative meta-materials are presented next with special focus on materials with negative compressibility and negative stiffness. Ultra-property meta-materials are the topic of the following section that covers ultra-light, ultra-stiff, and ultra-tough materials. Finally, the emerging areas of research in mechanical meta-materials including active, adaptive, programmable, and origami-based mechanical meta-materials are reviewed. This paper concludes with some suggestions for future research.

Graphical abstract: Mechanical meta-materials

Back to tab navigation

Article information

09 Mar 2016
13 Apr 2016
First published
14 Apr 2016

This article is Open Access

Mater. Horiz., 2016,3, 371-381
Article type
Review Article

Mechanical meta-materials

A. A. Zadpoor, Mater. Horiz., 2016, 3, 371
DOI: 10.1039/C6MH00065G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Social activity

Search articles by author