Jump to main content
Jump to site search

Issue 21, 2016
Previous Article Next Article

Random design of microfluidics

Author affiliations

Abstract

In this work we created functional microfluidic chips without actually designing them. We accomplished this by first generating a library of thousands of different random microfluidic chip designs, then simulating the behavior of each design on a computer using automated finite element analysis. The simulation results were then saved to a database which a user can query viahttp://random.groverlab.org to find chip designs suitable for a specific task. To demonstrate this functionality, we used our library to select chip designs that generate any three desired concentrations of a solute. We also fabricated and tested 16 chips from the library, confirmed that they function as predicted, and used these chips to perform a cell growth rate assay. This is one of many different applications for randomly-designed microfluidics; in principle, any microfluidic chip that can be simulated could be designed automatically using our method. Using this approach, individuals with no training in microfluidics can obtain custom chip designs for their own unique needs in just a few seconds.

Graphical abstract: Random design of microfluidics

Back to tab navigation

Supplementary files

Article information


Submitted
14 Jun 2016
Accepted
28 Sep 2016
First published
28 Sep 2016

Lab Chip, 2016,16, 4212-4219
Article type
Paper

Random design of microfluidics

J. Wang, P. Brisk and W. H. Grover, Lab Chip, 2016, 16, 4212
DOI: 10.1039/C6LC00758A

Social activity

Search articles by author

Spotlight

Advertisements