Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

Femtosecond laser-induced breakdown spectroscopy

Author affiliations


The presented review summarizes nearly two decades of studies on femtosecond laser-induced breakdown spectrometry (fs-LIBS). When an ultra-short (<1 ps) laser pulse is used for ablation, the physics of laser-induced plasma changes dramatically in comparison with ablation by pico or nanosecond pulses. A femtosecond laser pulse interacts only with the electron subsystem, while nanosecond pulses continuously interact with different thermodynamic states of material, starting from solid through liquid into plasma. The properties of ultra-short laser radiation, the timescale of fs-laser ablation and the radiative properties of fs plasma are briefly described. We consider the advantages of fs-LIBS, namely, low ablation thresholds, high-spatial resolution, and rapid analysis of samples, which require minimal invasion and allow high-efficiency transportation of laser radiation in filamentation mode for remote analysis. Moreover, we discussed possible limitations of the technique and different approaches to overcome such constraints while retaining the unique possibilities of fs-LIBS.

Graphical abstract: Femtosecond laser-induced breakdown spectroscopy

Back to tab navigation

Article information

23 Jul 2015
30 Oct 2015
First published
30 Oct 2015

J. Anal. At. Spectrom., 2016,31, 90-118
Article type
Critical Review

Femtosecond laser-induced breakdown spectroscopy

T. A. Labutin, V. N. Lednev, A. A. Ilyin and A. M. Popov, J. Anal. At. Spectrom., 2016, 31, 90
DOI: 10.1039/C5JA00301F

Social activity

Search articles by author