Issue 20, 2016

Direct conversion of methanol to n-C4H10 and H2 in a dielectric barrier discharge reactor

Abstract

Methanol is an important H-carrier and C1 chemical feedstock. In this paper, a direct conversion of methanol to n-C4H10 and H2 was achieved for the first time in a dielectric barrier discharge (DBD) non-thermal plasma reactor. The selective formation of n-C4H10 by limiting COx (x = 1 and 2) generation was obtained by optimizing different plasma processing parameters including the methanol inlet concentration, discharge power, and pre-heating temperature. The results showed that a higher methanol inlet concentration and a higher pre-heating temperature favors the formation of n-C4H10, while a higher methanol inlet concentration and a lower discharge power can effectively limit the formation of CO. The optimal selectivity for n-C4H10 (37.5%), H2 (28.9%) and CO (14%) was achieved, with a methanol conversion of 40.0%, at a methanol inlet concentration of 18 mol%, a discharge power of 30 W and a pre-heating temperature of 140 °C using N2 as a carrier gas. Value-added liquid chemicals (e.g., alcohols, acids, and heavy hydrocarbons) were also obtained from this reaction. Emission spectroscopy diagnostics reveals the formation of various reactive species (e.g., CH, C2, CN, H and metastable N2) in the CH3OH/N2 DBD. Possible reaction pathways for the formation of n-C4H10 were proposed and discussed.

Graphical abstract: Direct conversion of methanol to n-C4H10 and H2 in a dielectric barrier discharge reactor

Article information

Article type
Paper
Submitted
13 Jun 2016
Accepted
01 Aug 2016
First published
02 Aug 2016

Green Chem., 2016,18, 5658-5666

Direct conversion of methanol to n-C4H10 and H2 in a dielectric barrier discharge reactor

L. Wang, S. Y. Liu, C. Xu and X. Tu, Green Chem., 2016, 18, 5658 DOI: 10.1039/C6GC01604A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements