Jump to main content
Jump to site search

Issue 6, 2016
Previous Article Next Article

Advances in high permeability polymer-based membrane materials for CO2 separations

Author affiliations

Abstract

Membrane processes have evolved as a competitive approach in CO2 separations compared with absorption and adsorption processes, due to their inherent attributes such as energy-saving and continuous operation. High permeability membrane materials are crucial to efficient membrane processes. Among existing membrane materials for CO2 separations, polymer-based materials have some intrinsic advantages such as good processability, low price and a readily available variety of materials. In recent years, enormous research effort has been devoted to the use of membrane technology for CO2 separations from diverse sources such as flue gas (mainly N2), natural gas (mainly CH4) and syngas (mainly H2). Polymer-based membrane materials occupy the vast majority of all the membrane materials. For large-scale CO2 separations, polymer-based membrane materials with high CO2 permeability and good CO2/gas selectivity are required. In 2012, we published a Perspective review in Energy & Environmental Science on high permeability polymeric membrane materials for CO2 separations. Since then, more rapid progress has been made and the research focus has changed significantly. This review summarises the advances since 2012 on high permeability polymer-based membrane materials for CO2 separations. The major features of this review are reflected in the following three aspects: (1) we cover polymer-based membrane materials instead of purely polymeric membrane materials, which encompass both polymeric membranes and polymer–inorganic hybrid membranes. (2) CO2 facilitated transport membrane materials are presented. (3) Biomimetism and bioinspired membrane concepts are incorporated. A number of representative examples of recent advances in high permeability polymer-based membrane materials is highlighted with some critical analysis, followed by a brief perspective on future research and development directions.

Graphical abstract: Advances in high permeability polymer-based membrane materials for CO2 separations

Back to tab navigation

Article information


Submitted
17 Mar 2016
Accepted
29 Mar 2016
First published
05 Apr 2016

Energy Environ. Sci., 2016,9, 1863-1890
Article type
Review Article

Advances in high permeability polymer-based membrane materials for CO2 separations

S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang and M. D. Guiver, Energy Environ. Sci., 2016, 9, 1863
DOI: 10.1039/C6EE00811A

Social activity

Search articles by author

Spotlight

Advertisements