Issue 5, 2016

Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films

Abstract

The efficiency of perovskite solar cells is approaching that of single-crystalline silicon solar cells despite the presence of a large grain boundary (GB) area in the polycrystalline thin films. Here, by using a combination of nanoscopic and macroscopic level measurements, we show that ion migration in polycrystalline perovskites dominates through GBs. Atomic force microscopy measurements reveal much stronger hysteresis both for photocurrent and dark-current at the GBs than on the grain interiors, which can be explained by faster ion migration at the GBs. The dramatically enhanced ion migration results in the redistribution of ions along the GBs after electric poling, in contrast to the intact grain area. The perovskite single-crystal devices without GBs show negligible current hysteresis and no ion-migration signal. The discovery of dominating ion migration through GBs in perovskites can lead to broad applications in many types of devices including photovoltaics, memristors, and ion batteries.

Graphical abstract: Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2016
Accepted
21 Mar 2016
First published
21 Mar 2016

Energy Environ. Sci., 2016,9, 1752-1759

Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films

Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield and J. Huang, Energy Environ. Sci., 2016, 9, 1752 DOI: 10.1039/C6EE00413J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements