Issue 4, 2016

Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis

Abstract

Highly efficient electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been regarded as the core elements in a wide range of renewable energy technologies. Surface engineering of the electrocatalysts is one of the most popular strategies to improve their catalytic activity. Herein, we, for the first time, designed an advanced bi-functional electrocatalyst for the ORR and OER by simultaneously etching and doping a cobalt sulfides–graphene hybrid with NH3-plasma. The graphene supported Co9S8 nanoparticles were prepared (denoted as Co9S8/G) first, followed by the NH3-plasma treatment, which could not only lead to nitrogen doping into both Co9S8 and graphene, but also partially etch the surface of both Co9S8 and graphene. The heteroatom doping could efficiently tune the electronic properties of Co9S8 and graphene, and the surface etching could expose more active sites for electrocatalysis, which can contribute significantly to the enhanced electrocatalytic performance for ORR and OER. The electrochemical results revealed that the etched and N-doped Co9S8/G shows excellent ORR activity, which is close to that of the commercial Pt/C catalyst, and great OER activity. The strategy developed here provides a novel and efficient approach to prepare hybrid bi-functional electrocatalysts for ORR and OER.

Graphical abstract: Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2016
Accepted
22 Jan 2016
First published
22 Jan 2016

Energy Environ. Sci., 2016,9, 1320-1326

Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis

S. Dou, L. Tao, J. Huo, S. Wang and L. Dai, Energy Environ. Sci., 2016, 9, 1320 DOI: 10.1039/C6EE00054A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements