Issue 8, 2016

Developing nitrosocarborane chemistry


The new nitrosocarboranes [1-NO-2-R-1,2-closo-C2B10H10] [R = CH2Cl (1), CH3OCH2 (2) p-MeC6H4 (3), SiMe3 (4) and SiMe2tBu (5)] and [1-NO-7-Ph-1,7-closo-C2B10H10] (6) were synthesised by reaction of the appropriate lithiocarborane in diethyl ether with NOCl in petroleum ether followed by quenching the reaction with aqueous NaHCO3. These bright-blue compounds were characterised spectroscopically and, in several cases, crystallographically including structural determinations of 2 and 6 using crystals grown in situ on the diffractometer from liquid samples. In all cases the nitroso group bonds to the carborane as a 1e substituent (bent C–N–O sequence) and has little or no influence on <δ11B>, the weighted average 11B chemical shift, relative to that in the parent (monosubstituted) carborane. Mono- and dinitroso derivatives of 1,1′-bis(m-carborane), compounds 7 and 8 respectively, were similarly synthesised but attempts to prepare the mononitroso 1,1′-bis(o-carborane) by the same protocol led only to the hydroxylamine species [1-(1′-1′,2′-closo-C2B10H11)-2-N(H)OH-1,2-closo-C2B10H10] (9); the desired compound [1-(1′-1′,2′-closo-C2B10H11)-2-NO-1,2-closo-C2B10H10] (10) was only realised by switching to a non-aqueous work-up. The involvement of water in effecting the net reduction of the NO function in 10 to N(H)OH in 9 was confirmed by a series of experiments involving [1-N(H)OH-2-Ph-1,2-closo-C2B10H10] (11), [1-(1′-2′-D-1′,2′-closo-C2B10H10)-2-D-1,2-closo-C2B10H10] (12) and [1-(1′-2′-D-1′,2′-closo-C2B10H10)-2-N(H)OH-1,2-closo-C2B10H10] (13). It is suggested that during aqueous work-up a water molecule, H-bonded to the acidic C2′H of 10, is “delivered” to the adjacent C2NO unit. The ability of the NO group in nitrosocarboranes to undergo Diels–Alder cycloaddition reactions with cyclic 1,3-dienes was established via the syntheses of [1-(NOC10H14)-1,2-closo-C2B10H11] (14) and [1-(NOC6H8)-2-Ph-1,2-closo-C2B10H10] (15). This strategy was then utilised to prepare derivatives of the elusive dinitroso compounds of [1,2-closo-C2B10H12] and 1,1′-bis(o-carborane) leading to the sterically-crowded products [1,2-(NOC6H8)2-1,2-closo-C2B10H10] (16, prepared as meso and racemic diastereoisomers), [1-{1′-2′-(NOC6H8)-1′,2′-closo-C2B10H10}-2-(NOC6H8)-1,2-closo-C2B10H10] (17) and [1-(1′-1′,2′-closo-C2B10H11)-2-(NOC6H8)-1,2-closo-C2B10H10] (18).

Graphical abstract: Developing nitrosocarborane chemistry

Supplementary files

Article information

Article type
10 Dec 2015
11 Jan 2016
First published
14 Jan 2016

Dalton Trans., 2016,45, 3635-3647

Author version available

Developing nitrosocarborane chemistry

S. L. Powley, L. Schaefer, Wing. Y. Man, D. Ellis, G. M. Rosair and A. J. Welch, Dalton Trans., 2016, 45, 3635 DOI: 10.1039/C5DT04831A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity