Jump to main content
Jump to site search

Issue 16, 2016
Previous Article Next Article

Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis

Author affiliations

Abstract

Charge carrier dynamics in phase pure Ba5Ta4O15 and in a Ba5Ta4O15–Ba3Ta5O15 composite have been studied by means of diffuse reflectance laser flash photolysis spectroscopy in the presence and absence of an electron donor, in order to reveal the reason for the improved photocatalytic performance of the latter. For the first time the transient absorption of trapped electrons with a maximum at around 650 nm and of trapped holes with a transient absorption maximum at around 310 nm is reported for tantalates. The decay kinetics of the photogenerated charge carriers could be fitted by second order reaction kinetics, and the direct recombination of the trapped electrons with the trapped holes was proven. In the absence of an electron donor, no difference in the decay behavior between the phase pure material and the composite material is found. In the presence of methanol, for the pure phase Ba5Ta4O15 the recombination of the charge carriers could not be prevented and the trapped electrons also recombine with the ˙CH2OH radical formed via the methanol oxidation by the trapped holes. However, in the composite, the electron can be stored in the system, the ˙CH2OH radical injects an electron into the conduction band of the second component of the composite, i.e., Ba3Ta5O15. Thus, the electrons are available for an extended period to induce reduction reactions.

Graphical abstract: Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis

Back to tab navigation

Publication details

The article was received on 19 Nov 2015, accepted on 14 Dec 2015 and first published on 15 Dec 2015


Article type: Paper
DOI: 10.1039/C5CP07115A
Phys. Chem. Chem. Phys., 2016,18, 10719-10726
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis

    J. Schneider, K. Nikitin, M. Wark, D. W. Bahnemann and R. Marschall, Phys. Chem. Chem. Phys., 2016, 18, 10719
    DOI: 10.1039/C5CP07115A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements