Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2016
Previous Article Next Article

Electron spin relaxation in cryptochrome-based magnetoreception

Author affiliations

Abstract

The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have a significant effect on the coherent spin dynamics of the radicals. It is generally assumed that evolutionary pressure has led to protection of the electron spins from irreversible loss of coherence in order that the underlying quantum dynamics can survive in a noisy biological environment. Here, we address this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch–Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation on the performance of the protein as a compass sensor. Both flavin–tryptophan and flavin–Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain dihedral angles. For Arabidopsis thaliana cryptochrome 1 (AtCry1) we find that spin relaxation implies optimal radical pair lifetimes of the order of microseconds, and that flavin–Z˙ pairs are less affected by relaxation than flavin–tryptophan pairs. Our results also demonstrate that spin relaxation in isolated AtCry1 is incompatible with the long coherence times that have been postulated to explain the disruption of the avian magnetic compass sense by weak radiofrequency magnetic fields. We conclude that a cryptochrome sensor in vivo would have to differ dynamically, if not structurally, from isolated AtCry1. Our results clearly mark the limits of the current hypothesis and lead to a better understanding of the operation of radical pair magnetic sensors in noisy biological environments.

Graphical abstract: Electron spin relaxation in cryptochrome-based magnetoreception

Back to tab navigation

Supplementary files

Article information


Submitted
04 Nov 2015
Accepted
16 Mar 2016
First published
16 Mar 2016

Phys. Chem. Chem. Phys., 2016,18, 12443-12456
Article type
Paper
Author version available

Electron spin relaxation in cryptochrome-based magnetoreception

D. R. Kattnig, I. A. Solov'yov and P. J. Hore, Phys. Chem. Chem. Phys., 2016, 18, 12443
DOI: 10.1039/C5CP06731F

Social activity

Search articles by author

Spotlight

Advertisements