Jump to main content
Jump to site search

Issue 2, 2016
Previous Article Next Article

Three-dimensional multilayered fibrous constructs for wound healing applications

Author affiliations


Electrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is reported the production of three-dimensional fibrous materials with an asymmetrical inner structure and engineered surfaces. The manufactured constructs evidence fibrous-based microsized conical protrusions [length: (10 ± 3) × 102 μm; width: (3.8 ± 0.8) × 102 μm] at their top side, with a median peak density of 73 peaks per cm2, while their bottom side resembles to a non-woven mesh commonly observed in the fabrication of two-dimensional electrospun materials. Regarding their thickness (3.7 ± 0.1 mm) and asymmetric fibrous inner architecture, such materials avoid external liquid absorption while promoting internal liquid uptake. Nevertheless, such constructs also observed the high porosity (89.9%) and surface area (1.44 m2 g−1) characteristic of traditional electrospun mats. Spray layer-by-layer assembly is used to effectively coat the structurally complex materials, allowing to complementary tailor features such as water vapor transmission, swelling ratio and bioactive agent release. Tested as wound dressings, the novel constructs are capable of withstanding (11.0 ± 0.3) × 104 kg m−2 even after 14 days of hydration, while actively promote wound healing (90 ± 0.5% of wound closure within 48 hours) although avoiding cell adhesion on the dressings for a painless removal.

Graphical abstract: Three-dimensional multilayered fibrous constructs for wound healing applications

Back to tab navigation

Supplementary files

Article information

28 Jun 2015
10 Nov 2015
First published
19 Nov 2015

Biomater. Sci., 2016,4, 319-330
Article type
Author version available

Three-dimensional multilayered fibrous constructs for wound healing applications

T. C. Reis, S. Castleberry, A. M. B. Rego, A. Aguiar-Ricardo and P. T. Hammond, Biomater. Sci., 2016, 4, 319
DOI: 10.1039/C5BM00211G

Social activity

Search articles by author