Jump to main content
Jump to site search

Issue 43, 2015
Previous Article Next Article

Electronic and optical properties of Er-doped Y2O2S phosphors

Author affiliations


In this paper, we report a detailed computational and experimental investigation of the structural, electronic and dynamic properties of undoped and Er3+-doped Y2O2S phosphors by using computational crystal field (CF) calculations and electronic density of states by density functional theory (DFT), combined with optical measurements including excitation spectra, emission spectra from X-ray, ultraviolet and near infrared (NIR) excitations, and quantum yield determination under ultraviolet and NIR excitations. Emission decays and quantum yields of the visible and NIR bands were measured for different Er3+ doping concentrations in the Er3+-doped Y2O2S phosphors. Results show that green (550 nm) and red (667 nm) emission intensity and the respective ratio of these emission intensities depend on both the excitation wavelength and the Er3+ doping concentration. Although the total emission efficiency does not appreciably depend on the excitation wavelength, the excitation wavelength that provided the highest efficiency was found to be 250 nm in these Er3+-doped Y2O2S phosphors with both 1% and 10% Er doping concentrations.

Graphical abstract: Electronic and optical properties of Er-doped Y2O2S phosphors

Back to tab navigation

Supplementary files

Article information

26 Aug 2015
07 Oct 2015
First published
08 Oct 2015

J. Mater. Chem. C, 2015,3, 11486-11496
Article type

Electronic and optical properties of Er-doped Y2O2S phosphors

M. Pokhrel, G. A. Kumar, C.-G. Ma, M. G. Brik, B. W. Langloss, I. N. Stanton, M. J. Therien, D. K. Sardar and Y. Mao, J. Mater. Chem. C, 2015, 3, 11486
DOI: 10.1039/C5TC02665B

Social activity

Search articles by author