Issue 27, 2015

Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy

Abstract

Spin-coated polyaniline (PANI) thin films can be made conductive following treatment with a dopant (reducing or oxidising agent). However, de-doping results in loss of electrical properties. We chemically doped PANI films using p-toluene sulfonic acid (pTSA) and camphor sulfonic acid (CSA) and examined their ability to retain these dopants and their conductive properties in physiological media. Changes in the protonation level of these films were assessed by N 1s core line spectra in X-ray photoelectron spectroscopy (XPS). PANI films were found to de-dope with a decrease in the ratio of N 1s photoelectron signal corresponding to positively charged nitrogen (i.e. –NH2+, [double bond, length as m-dash]NH+) to the total N 1s signal. De-doping of PANI films was confirmed by depletion of the dopant fragment (–SO3) as determined from both XPS and atomic distribution in Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) images. XPS has been successfully used as a tool to elucidate the deprotonation of PANI films and the loss of the dopant from the bulk.

Graphical abstract: Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2015
Accepted
12 Jun 2015
First published
16 Jun 2015

J. Mater. Chem. C, 2015,3, 7180-7186

Author version available

Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy

M. M. Mahat, D. Mawad, G. W. Nelson, S. Fearn, R. G. Palgrave, D. J. Payne and M. M. Stevens, J. Mater. Chem. C, 2015, 3, 7180 DOI: 10.1039/C5TC01038A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements