Jump to main content
Jump to site search

Issue 4, 2015
Previous Article Next Article

Starburst 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes

Author affiliations

Abstract

On the basis of a well-known hole transporting material, namely 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine (TCTA), a series of star-shaped deep-blue fluorescent emitters (2P-TCTA, 3P-TCTA, 4P-TCTA and 5P-TCTA) have been successfully developed via a simple extension of the oligophenyl chain between two N atoms. When the number of phenyl rings increases, it is found that both the absorption and emission for these TCTA-based starbursts are red-shifted and finally become saturated for 5P-TCTA consisting of a pentaphenyl bridge. Interestingly, on going from 2P-TCTA to 5P-TCTA, the film photoluminescence quantum yield is gradually enhanced from 11.4% to 35.5%. The same trend is also observed for their corresponding solution-processed undoped OLEDs. As a consequence, 5P-TCTA shows the best device performance, revealing a maximum luminescence of 7300 cd m−2, and a peak luminous efficiency of 2.48 cd A−1 (2.15 lm W−1; 2.30%) together with CIE coordinates of (0.15, 0.09).

Graphical abstract: Starburst 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes

Back to tab navigation

Supplementary files

Article information


Submitted
26 Sep 2014
Accepted
17 Nov 2014
First published
20 Nov 2014

J. Mater. Chem. C, 2015,3, 861-869
Article type
Paper
Author version available

Starburst 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes

M. Yu, S. Wang, S. Shao, J. Ding, L. Wang, X. Jing and F. Wang, J. Mater. Chem. C, 2015, 3, 861
DOI: 10.1039/C4TC02173H

Social activity

Search articles by author

Spotlight

Advertisements