Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range
Abstract
We report a detailed study on the electromagnetic interference (EMI) shielding effectiveness (SE) properties in La0.7Sr0.3MnO3 (LSMO) nanomaterials. The samples were prepared by a solution chemistry (sol–gel) route at different sintering temperatures. The single-phase samples with grain sizes of 22 and 34 nm showed DC electrical conductivity variation from 0.65 to 13 S cm−1 at room temperature. The application of a high magnetic field resulted in higher conductivity values. The electrical conductivity variation with temperature could be fitted with a variable range hopping mechanism in a limited temperature range. The variation of frequency dependent electromagnetic parameters measured at room temperature within the X-band region is consistent with the electrical conductivity behavior. The complex permittivity and permeability parameters were determined in line with the Nicolson–Ross–Weir algorithm. The LSMO nanomaterial samples showed EMI shielding effectiveness values of up to 19 dB (96.3% attenuation) over the X-band frequency range, making them suitable for microwave radiation shielding in commercial and defense appliances.