Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 22, 2015
Previous Article Next Article

Diffusion–reaction models of genipin incorporation into fibrin networks

Author affiliations

Abstract

Genipin is a naturally derived small molecule that crosslinks compounds containing primary amines including many natural biopolymers. A diffusion–reaction model to predict the rates of delivery and incorporation of genipin into fibrin networks is presented. Genipin crosslink formation within fibrin hydrogels is a multi-step process that requires genipin diffusion and reaction with primary amines in hydrated networks. The reaction rate of genipin into fibrin gels was measured via spectroscopy while the rate of marginal crosslink formation was measured by rheology. Covalent coupling between genipin and primary amines in fibrin gels obeys second-order kinetics in genipin concentration with an effective activation energy of −71.9 ± 3.2 kJ mol−1. Genipin diffusion–reaction within fibrin gels exhibits Thiele moduli between 0.02–0.28, which suggests that the systems studied herein are reaction-limited. Genipin-crosslinked fibrin clots are resistant to fibrinolytic degradation as measured by rheology. Finally, active genipin can be delivered from poly(D,L-lactide-co-glycolide) matrices to gels at rates that are comparable to the characteristic rate of incorporation in fibrin networks. Taken together, this work establishes a quantitative framework to engineer controlled release systems for genipin delivery into protein-based hydrogel networks.

Graphical abstract: Diffusion–reaction models of genipin incorporation into fibrin networks

Back to tab navigation

Supplementary files

Article information


Submitted
10 Dec 2014
Accepted
11 May 2015
First published
12 May 2015

J. Mater. Chem. B, 2015,3, 4607-4615
Article type
Paper
Author version available

Diffusion–reaction models of genipin incorporation into fibrin networks

C. Ninh, A. Iftikhar, M. Cramer and C. J. Bettinger, J. Mater. Chem. B, 2015, 3, 4607
DOI: 10.1039/C4TB02025A

Social activity

Search articles by author

Spotlight

Advertisements