Issue 42, 2015

Creating robust superamphiphobic coatings for both hard and soft materials

Abstract

Most superhydrophobic surfaces lose their water-repellency when either contaminated by oily liquids or by being mechanically damaged. Superamphiphobic surfaces are ones that repel both oil and water. However, to date such surfaces are hampered by being mechanically weak. Robust superamphiphobic surfaces with highly water and oil repellent properties are desired for a wide range of environments. Reported herein is a superamphiphobic coatings fabricated by a facile deposition method and followed by a low surface energy materials modification. These coatings can be applied on both hard and soft materials to repel water, glycerol, peanut-oil droplets and some organic solvents. Falling sand abrasion, UV irradiation and aqueous media immersion were used to test the mechanical robustness and durability of the superamphiphobic coatings. A multi-cycle stretch/release test was developed to characterize the robustness of the self-cleaning soft materials. A coated rubber-bond retained both water and oil repellency even after 50 stretch/release cycles. These tests show that the superamphiphobic coatings have remarkable mechanical robustness and UV/aqueous media resistance and can be readily applied to a wide variety of materials to form self-cleaning surfaces that are extremely robust and durable even under intense strains.

Graphical abstract: Creating robust superamphiphobic coatings for both hard and soft materials

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2015
Accepted
16 Sep 2015
First published
24 Sep 2015

J. Mater. Chem. A, 2015,3, 20999-21008

Author version available

Creating robust superamphiphobic coatings for both hard and soft materials

F. Chen, J. Song, Y. Lu, S. Huang, X. Liu, J. Sun, C. J. Carmalt, I. P. Parkin and W. Xu, J. Mater. Chem. A, 2015, 3, 20999 DOI: 10.1039/C5TA05333A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements