Issue 32, 2015

Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction

Abstract

With a novel two-step approach, we prepared a low-cost, high-performance, binary transition metal nitride (BTMN) catalyst. An ammonia (NH3) complex of Ti and a transition metal was prepared in an organic solvent by the reaction of metal ions with ammonium; the complex then was dried in a vacuum oven, followed by nitridation in a tubular furnace under NH3 flow. The catalyst exhibited excellent activity towards the oxygen reduction reaction (ORR) in an alkaline medium and good ORR activity in an acidic medium. The effects of the doping elements (Fe, Co, and Ni), the doping concentration, and various nitriding temperatures on catalytic performance were intensively investigated. The onset potential of the Ti0.95Ni0.5N catalyst reached 0.83 V, with a limiting diffusion current density of 4 mA cm−2 (at a rotation speed of 1600 rpm) in 0.1 M HClO4 solution, which is the highest to date among the reported TiN-based electrocatalysts in an acidic medium. In 0.1 M KOH solution, the performance of this catalyst was almost comparable to that of commercial JM Pt/C; the diffusion current density reached 5.3 mA cm−2, and the halfway potential was only 71 mV inferior to that of commercial JM Pt/C. Furthermore, the catalyst showed high stability and only a slight drop in its current density after the durability test. All of these findings make our BTMN catalyst attractive for PEMFCs.

Graphical abstract: Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2015
Accepted
13 Jul 2015
First published
13 Jul 2015

J. Mater. Chem. A, 2015,3, 16801-16809

Author version available

Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction

X. Tian, J. Luo, H. Nan, Z. Fu, J. Zeng and S. Liao, J. Mater. Chem. A, 2015, 3, 16801 DOI: 10.1039/C5TA04410C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements