Issue 34, 2015

Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells

Abstract

Graphene-embedded carbon nanofibers (GCNFs) were developed as a new counter electrode nanomaterial for high efficiency dye-sensitized solar cells (DSCs). GCNFs were produced by electrospinning polyacrylonitrile (PAN) with graphene nanoplatelets followed by stabilization and carbonization. GCNFs decorated with surface-attached platinum nanoneedles (GCNFs-PtNNs) were subsequently prepared by a redox reaction and then deposited onto fluorine doped tin oxide (FTO) glass to make a counter electrode for DSCs. Graphene inside the carbon nanofibers and Pt nanoneedles on the surface demonstrated a synergistic effect to improve the DSC performance. Compared to DSCs with conventional planar Pt counter electrodes, the DSCs with GCNFs-PtNNs significantly improved the energy conversion efficiency from ∼8.63% to ∼9.70% using a mask under AM1.5 illumination. This is the highest conversion efficiency so far with a carbon nanofiber based counter electrode.

Graphical abstract: Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells

Article information

Article type
Paper
Submitted
05 Jun 2015
Accepted
20 Jul 2015
First published
24 Jul 2015

J. Mater. Chem. A, 2015,3, 17721-17727

Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells

H. Elbohy, A. Aboagye, S. Sigdel, Q. Wang, M. H. Sayyad, L. Zhang and Q. Qiao, J. Mater. Chem. A, 2015, 3, 17721 DOI: 10.1039/C5TA04061B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements